Estudo conclui que nem todos os deltas identificados em Marte são verdadeiros

Um estudo [icon name="external-link" class="" unprefixed_class=""] liderado por David Vaz, da Universidade de Coimbra (UC), e Gaetano Di Achille, do Instituto Nacional de Astrofísica de Itália (INAF), apresenta novos dados para o debate sobre as implicações climáticas, hidrogeológicas e astrobiológicas dos depósitos sedimentares deltaicos em Marte.

Nas duas últimas décadas, dezenas de possíveis depósitos sedimentares deltaicos foram identificados na superfície de Marte, tendo a sua formação sido atribuída à existência de antigos lagos e rios marcianos. Esse tipo de depósito sedimentar é considerado uma das principais evidências para sustentar a ideia de que, no passado, Marte apresentava condições climáticas mais favoráveis que permitiram a presença de água líquida no planeta.

No entanto, o estudo agora publicado na revista científica Earth and Planetary Science Letters conclui que não é bem assim, ou seja, uma grande parte dos depósitos anteriormente identificados no planeta vermelho não é de origem deltaica (os deltas formam-se pela acumulação de sedimentos transportados pelos rios), ao contrário do que a comunidade científica defendia.

A partir de topografia de alta resolução fornecida por imagens de missões espaciais europeias e americanas, os investigadores analisaram 60 depósitos sedimentares de diferentes zonas de Marte e, com surpresa, verificaram que apenas «30 por cento são realmente deltas, ou seja, depósitos associados a ambientes subaquáticos e que consequentemente indicam de facto a existência de lagos e de uma maior quantidade de água. A maioria deles terá uma origem diferente, tendo-se depositado em ambientes principalmente subaéreos, ou seja, existiram menos lagos do que se pensava em Marte», afirma David Vaz, investigador do Centro de Investigação da Terra e do Espaço (CITEUC) da Faculdade de Ciências e Tecnologia da Universidade de Coimbra (FCTUC).

Estes depósitos sedimentares que não têm origem deltaica «podem ser produto de atividade hidrológica efémera e transitória gerada por mecanismos locais, ligados, por exemplo, a atividade vulcânica, tectónica, impacto de meteoritos ou cometas, que poderiam ter derretido o gelo subterrâneo, gerando fluxos de água», esclarece.

Segundo o investigador do CITEUC, as conclusões deste trabalho são um contributo importante para futuras missões espaciais, pois «são indicadores geomorfológicos importantes para a escolha de locais ideais para missões com objetivos astrobiológicos, sugerindo que muitos dos possíveis lagos anteriormente identificados como tal deveriam ser cuidadosamente reanalisados para excluir a ocorrência de mecanismos locais que geraram atividade hidrogeológica efémera, não necessariamente associada a um clima global favorável à presença estável de água líquida durante longos períodos de tempo».

Por outro lado, sublinha David Vaz, os resultados deste estudo trazem novos elementos para a discussão sobre a evolução climática em Marte, sugerindo que «a formação dos verdadeiros deltas poderá ter sido mais limitada no espaço e no tempo».

Para caracterizarem os depósitos sedimentares, os investigadores efetuaram um balanço volumétrico entre os sedimentos erodidos (estimando o volume dos vales formados pela ação dos rios no passado) e os volumes depositados nos possíveis deltas. «Esse balanço foi utilizado como indicador para decifrar os mecanismos sedimentares predominantes durante a formação dos depósitos», remata David Vaz.

[bs_smart_list_pack_start][/bs_smart_list_pack_start]

Legenda Figura 1




Mapa global de Marte com a localização dos 60 depósitos sedimentares considerados no estudo; (b, c) esquema exemplar da lógica da investigação: se a bacia que recebe os sedimentos não é ocupada pela água, o volume dos sedimentos erodidos no vale (Vv) é comparável ao do depósito (Vf) que se forma onde o fluxo perde energia, enquanto se a bacia recetora estiver permanentemente cheia de água, parte substancial dos sedimentos transportados em suspensão no rio são dispersos para além da foz, tornando o volume do delta (Vf) menor do que o erodido no vale (Vv).

Legenda Figura 2


Vale e depósito sedimentar localizado na região de Terra Cimmeria, este é um exemplo do tipo de depósitos que não se formaram por processos fluvio-deltaicos (crédito: NASA/JPL-Caltech/MSSS).

Legenda Figura 3


Vale e depósito sedimentar localizado na cratera de Eberswalde, o estudo confirmou que este depósito é muito provavelmente um delta formado num antigo lago (crédito: NASA/JPL-Caltech/MSSS).
[bs_smart_list_pack_end][/bs_smart_list_pack_end]

A origem do fósforo da vida

O fósforo, presente no nosso DNA e nas membranas as células, é um elemento essencial à vida tal como a conhecemos. No entanto, o modo como este elemento chegou à Terra primordial é ainda um mistério. Com o auxílio do poder combinado do telescópio ALMA (Atacama Large Millimeter/submillimeter Array) e da sonda Rosetta, da Agência Espacial Europeia, os astrónomos traçaram agora a viagem do fósforo, desde as regiões de formação estelar até aos cometas. Este trabalho de investigação mostra pela primeira vez onde é que as moléculas que contêm fósforo se formam, como é que este elemento é transportado nos cometas e como é que uma molécula particular pode ter desempenhado um papel crucial no início da vida no nosso planeta.

“A vida apareceu na Terra há cerca de 4 mil milhões de anos, mas ainda não sabemos bem quais os processos que a tornaram possível," diz Víctor Rivilla, o autor principal de um novo estudo publicado na revista da especialidade Monthly Notices of the Royal Astronomical Society [icon name="file-pdf-o" class="" unprefixed_class=""]. Os novos resultados do Atacama Large Millimeter/submillimeter Array (ALMA), do qual o Observatório Europeu do Sul (ESO) é parceiro, e do instrumento ROSINA a bordo da sonda espacial Rosetta da Agência Espacial Europeia (ESA), mostram que o monóxido de fósforo é uma peça crucial no puzzle da origem da vida.

Com o auxílio do ALMA, que permitiu observar de forma detalhada a região de formação estelar AFGL 5142, os astrónomos conseguiram localizar onde é que moléculas com fósforo, como o monóxido de fósforo, se formam. As novas estrelas e sistemas planetários formam-se em regiões nebulosas de gás e poeira existentes entre as estrelas, fazendo destas nuvens interestelares os locais ideais para procurar os blocos constituintes da vida.

As observações ALMA mostraram que moléculas que contêm fósforo são criadas quando estrelas massivas se formam. Correntes de gás emitidas pelas jovens estrelas massivas abrem cavidades nas nuvens interestelares e moléculas que contêm fósforo formam-se nas paredes destas cavidades, através da ação combinada de choques e radiação da estrela bebé. Os astrónomos mostraram também que o monóxido de fósforo é a molécula com fósforo mais abundante nas paredes das cavidades.

Após procurar com o ALMA esta molécula nas regiões de formação estelar, a equipa europeia concentrou-se seguidamente num objeto do Sistema Solar: o famoso cometa 67P/Churyumov-Gerasimenko. A ideia consistia em seguir o percurso destes compostos de fósforo. Se as paredes da cavidade colapsam para formar estrelas, em particular nas menos massivas como o nosso Sol, o monóxido de fósforo pode congelar e encontrar-se preso nos grãos de poeira gelados que permanecem em torno da nova estrela. Ainda antes da estrela estar completamente formada, estes grãos de poeira juntam-se formando pequenos calhaus, rochas e eventualmente cometas, estes últimos tornando-se os transportadores do monóxido de fósforo.

ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) colectou dados do 67P durante os dois anos em que Rosetta orbitou este cometa. Os astrónomos já tinham descoberto anteriormente traços de fósforo nos dados de ROSINA, mas não sabiam que molécula é que o teria transportado até lá. Kathrin Altwegg, Investigadora Principal de ROSINA e uma das autoras deste novo estudo, recebeu uma pista do que é que esta molécula poderia ser durante uma conversa numa conferência com uma astrónoma que estuda regiões de formação estelar com o ALMA: ”Ela disse-me que o monóxido de fósforo seria um candidato muito provável, por isso voltei a analisar os nossos dados e realmente lá estava ele!

Esta primeira observação de monóxido de fósforo num cometa ajuda os astrónomos a estabelecerem uma ligação entre as regiões de formação estelar, onde a molécula é criada, e a Terra.

A combinação de dados ALMA e ROSINA revelou uma espécie de linha condutora química durante todo o processo de formação estelar e onde o monóxido de fósforo desempenha um papel principal,” diz Rivilla, investigador no Observatório Astrofísico de Arcetri do INAF, o Instituto Nacional de Astrofísica de Itália.

O fósforo é essencial à vida tal como a conhecemos”, acrescenta Altwegg. “Como muito provavelmente os cometas transportaram enormes quantidades de compostos orgânicos para a Terra, o monóxido de fósforo encontrado no cometa 67P poderá fortalecer a ligação entre cometas e a vida na Terra.

Esta viagem intrigante pôde ser documentada graças aos esforços de colaboração entre astrónomos. “A deteção de monóxido de fósforo deveu-se claramente a uma troca interdisciplinar entre telescópios na Terra e instrumentos no espaço,” diz Altwegg.

Leonardo Testi, astronómo do ESO e Gestor de Operações do ALMA na Europa, conclui: “Compreender as nossas origens cósmicas, incluindo quão comuns são as condições químicas favoráveis ao aparecimento de vida, é um tópico principal da astrofísica moderna. Enquanto o ESO e o ALMA se focam em observações de moléculas em sistemas planetários jovens distantes, a exploração direta do inventário químico no seio do nosso Sistema Solar torna-se possível graças a missões da ESA, como Rosetta. A sinergia entre infraestruturas líder mundiais colocadas no solo e no espaço, através da colaboração entre o ESO e a ESA, é uma mais valia muito poderosa para os investigadores europeus, permitindo descobertas verdadeiramente transformadoras como a que é descrita neste trabalho.”

Observatório Europeu do Sul – Portugal
© 2020 - Ciência na Imprensa Regional / Ciência Viva

Descortinar novas Terras por entre o “ruído” das estrelas

Descobrir planetas em órbita de outras estrelas implica detetar, indiretamente,os efeitos que estes provocam na sua estrela  Quando se procura planetas tão pequenos como a Terra, esses efeitos podem diluir-se no “ruído” da atividade estelar, criado por manchas estelares ou zonas de alto brilho. Esta atividade pode mesmo imitar a presença de um ou mais planetas, que de facto não existem.

Uma discordância sobre a existência de planetas à volta da estrela HD 41248, na constelação do Pintor, do hemisfério celeste sul, foi agora resolvida com os primeiros dados obtidos pelo espectrógrafo ESPRESSO [icon name="external-link" class="" unprefixed_class=""]. Um estudo (DOI: 10.1051/0004-6361/201936389 [icon name="external-link" class="" unprefixed_class=""]), a ser publicado pela revista científica Astronomy & Astrophysics [icon name="external-link" class="" unprefixed_class=""] e liderado por João Faria, do Instituto de Astrofísica e Ciências do Espaço (IA [icon name="external-link" class="" unprefixed_class=""]) e da Faculdade de Ciências da Universidade do Porto (FCUP [icon name="external-link" class="" unprefixed_class=""]), e com a participação de mais doze investigadores do IA, concluiu que o que parecia ser o sinal de dois planetas em órbita, é muito provavelmente atividade da própria estrela.

O nosso trabalho demonstra que detetar pequenos planetas, até mesmo maiores do que a Terra, não é uma tarefa fácil. A contaminação causada pela própria estrela tem que ser tida em conta e corrigida”, comenta João Faria. “Este vai ser de certeza um passo necessário para a deteção de um planeta como a Terra, e este estudo é o primeiro avanço na utilização do ESPRESSO para esse objetivo.

A estrela HD 41248 está a cerca de 181 anos-luz da Terra. É pouco mais pequena e menos massiva que o Sol, sendo também mais velha. Foi objeto de três artigos científicos que discordavam quanto à existência de dois planetas a orbitá-la. A precisão do espectrógrafo HARPS [icon name="external-link" class="" unprefixed_class=""], utilizado nesses estudos anteriores, instrumento localizado no Observatório de La Silla, no Chile, não era suficiente para resolver o problema com um número razoável de novas observações.

Este novo artigo reúne os dados pré-existentes, obtidos em 2003 e 2014 com o HARPS, aos obtidos agora com o ESPRESSO, no VLT [icon name="external-link" class="" unprefixed_class=""]. Inaugurado em setembro de 2018, a construção deste instrumento teve a participação e coliderança do IA. Os dados agora obtidos representam a estreia do ESPRESSO na busca de exoplanetas. Com uma precisão (menor margem de erro) sem precedentes na medição de velocidades radiais, estas novas observações permitem distinguir os sinais provenientes dos planetas daqueles causados pela atividade estelar.

O Método das Velocidades Radiais deteta exoplanetas medindo pequenas variações na velocidade (radial) da estrela, devidas ao movimento que a órbita desses planetas imprime na estrela. A título de exemplo, a variação de velocidade que o movimento da Terra imprime no Sol é de apenas 10 centímetros por segundo (cerca de 0,36 km/h). Com este método é possível determinar o valor mínimo da massa do planeta. No entanto, em conjunto com o método dos trânsitos, é possível determinar a massa real.

Segundo os autores deste estudo, o conjunto de dados não pode ser explicado de forma consistente pela existência de um sistema planetário. Pelo contrário, modelos da atividade da estrela reproduzem melhor, por si só, as observações. Estes modelos interpretam as variações de velocidade radial como regiões ativas na superfície da estrela (por exemplo, manchas ou zonas brilhantes, tais com as existentes no Sol) que, à medida que a estrela completa uma rotação a cada 25 dias, ora surgem de um lado da estrela, ora se escondem do lado oposto. Estes modelos ajustam-se de tal modo ao sinal registado no espectro da luz da estrela que não deixam margem para a existência dos planetas anteriormente anunciada.

A precisão do ESPRESSO põe em evidência processos físicos nas estrelas, alguns ainda não completamente compreendidos, e que encobrem ou imitam o sinal produzido por planetas pequenos. Segundo Nuno Santos, coautor do artigo, investigador do IA, professor na FCUP, e coinvestigador principal do ESPRESSO, “este resultado mostra que, além da capacidade incrível que o ESPRESSO tem para procurar novos planetas, os dados recolhidos permitem ainda obter informações únicas sobre as estrelas e que nos dão a possibilidade de subtrair fontes de sinais que podem enganar as nossas observações.”

Mas ainda é necessário entender melhor a forma como a atividade estelar pode afetar as variações de velocidade que medimos”, acrescenta João Faria, “e encontrar melhores métodos para analisar e retirar toda a informação dos dados.” Neste contexto, este investigador está a desenvolver uma ferramenta informática que permite usar riscas no espectro da estrela que são menos afetadas pela atividade desta.

Esta é a primeira análise de dados do ESPRESSO e demonstra que o instrumento está a produzir velocidades radiais com a precisão esperada, e que será suficiente para detetar planetas parecidos com a Terra”, afirma João Faria.

Buracos negros na madrugada cósmica

Com o auxílio do Very Large Telescope do ESO, os astrónomos observaram reservatórios de gás frio em torno de algumas das galáxias mais primordiais do Universo. Estes halos de gás são o “alimento” perfeito dos buracos negros supermassivos situados no centro destas galáxias, as quais observamos tal como eram há cerca de 12,5 mil milhões de anos atrás. Este depósito de “comida” pode muito bem explicar como é que estes monstros cósmicos cresceram tão depressa durante um período da história do Universo conhecido por Madrugada Cósmica.

“Podemos demonstrar pela primeira vez que as galáxias primordiais dispõem de “alimento” suficiente nas suas vizinhanças para conseguirem fazer com que os buracos negros supermassivos nos seus centros cresçam ao mesmo tempo que mantêm uma formação estelar intensa,” diz Emanuele Paolo Farina, do Instituto Max Planck de Astronomia em Heidelberg, na Alemanha, que liderou o trabalho de investigação publicado hoje na revista da especialidade The Astrophysical Journal. “Juntámos assim uma peça fundamental ao puzzle que os astrónomos estão a construir para compreender como é que as estruturas cósmicas se formaram há mais de 12 mil milhões de anos atrás.”

Os astrónomos perguntavam-se como é que os buracos negros supermassivos conseguiam crescer tanto tão cedo na história do Universo. “A presença destes monstros primordiais, com massas de vários milhares de milhões de vezes a massa do Sol, constituía um mistério,” diz Farina, também afiliado ao Instituto Max Planck de Astrofísica em Garching bei München, na Alemanha. Isto significa que os primeiros buracos negros, que se devem ter formado do colapso das primeiras estrelas, cresceram muito depressa. No entanto, e até agora, os astrónomos não tinham descoberto “comida de buraco negro” — ou seja, gás e poeira — em quantidades suficientemente elevadas para explicar este crescimento tão rápido.

Para complicar ainda mais a situação, observações obtidas anteriormente com o ALMA (Atacama Large Millimeter/submillimeter Array) revelaram uma enorme quantidade de poeira e gás nestas galáxias primordiais, mas que parecia desencadear essencialmente formação estelar muito intensa, sugerindo que poderia restar muito pouco material para alimentar um buraco negro.

Para desvendar este mistério, Farina e colegas usaram o instrumento MUSE montado no Very Large Telescope do ESO (VLT), instalado no deserto chileno do Atacama, para estudar quasares — objetos extremamente luminosos situados no centro de galáxias massivas e alimentados por buracos negros supermassivos. Este estudo observou 31 quasares vistos tal como eram há mais de 12,5 mil milhões de anos atrás, numa altura em que o Universo era ainda muito jovem, com apenas 870 milhões de anos de idade. Trata-se de uma das maiores amostras de quasares tão primordiais na história do Universo a serem estudadas.

Os astrónomos descobriram que 12 destes quasares se encontram rodeados por enormes reservatórios de gás: halos de hidrogénio gasoso denso e frio que se estendem até 100 000 anos-luz de distância dos buracos negros centrais, com milhares de milhões de massas solares. A equipa descobriu também que estes halos de gás se encontram fortemente ligados às galáxias, fornecendo-lhes assim uma fonte de “alimento” perfeita para manter tanto o crescimento do buraco negro como uma formação estelar intensa.

Este trabalho foi possível graças à extrema sensibilidade do instrumento MUSE (Multi Unit Spectroscopic Explorer) montado no VLT do ESO, o qual Farina descreve como “decisivo” no estudo de quasares. “Com apenas algumas horas de observação por alvo, conseguimos investigar os arredores dos maiores e mais esfomeados buracos negros presentes no Universo primordial,” acrescenta Farina. Apesar dos quasares serem muito brilhantes, os reservatórios de gás que os circundam são muito mais difíceis de observar. Ainda assim, o MUSE conseguiu detectar o brilho ténue do hidrogénio gasoso nos halos, permitindo aos astrónomos descobrir finalmente estes depósitos de “comida” que alimentavam os buracos negros supermassivos no Universo primitivo.

Num futuro próximo, o Extremely Large Telescope (ELT) do ESO ajudará os cientistas a revelar ainda mais detalhes sobre as galáxias e os buracos negros supermassivos nos dois primeiros milhares de milhões de anos após o Big Bang. “Com o ELT poderemos observar ainda mais profundamente o Universo primordial e descobrir muitas mais destas nebulosas de gás,” conclui Farina.

Observatório Europeu do Sul
Ciência na Imprensa Regional – Ciência Viva

Descobrir o exótico no Universo

A atenção ao detalhe levou a astrónoma Jocelyn Bell a confirmar a existência de um dos objetos mais exóticos e mais importantes em astronomia: as estrelas de neutrões.

Um certo “ruído”
Natural da Irlanda do Norte, onde nasceu em 1943, Jocelyn Bell estudou Física em Glasgow, na Escócia. No princípio da década de 60, iniciou o seu doutoramento em Cambridge.

Com os colegas, construiu um novo radiotelescópio no Mullard Radio Astronomy Observatory. Na aparência um campo de estacas ligadas por fios, destinava-se este novo equipamento à deteção de fontes intensas no rádio, designadas quasares, que hoje se sabe serem núcleos muito brilhantes de galáxias longínquas.

Concluída a sua construção, o trabalho de Jocelyn Bell consistiu em obter e analisar o registo de emissões no rádio provenientes da abóbada celeste, registos que em geral preenchiam diariamente cerca de 300 metros de tiras de papel.

Os sinais que a astrónoma procurava eram bastante mais intensos do que um certo “ruído” que lhe despertou a atenção. Tratava-se de uma pulsação muito rápida, com um período de 1,34 segundos. O sinal era tão subtil que o seu próprio orientador de doutoramento, Anthony Hewish, estava disposto a ignorá-lo.

Bell descartou a possibilidade de ser uma interferência artificial com origem na Terra, já que persistia durante meses e acompanhava o movimento aparente das estrelas. Também a hipótese de um contacto extraterrestre foi rejeitada, pois Bell descobriu, entretanto, noutras direções do céu mais três fontes pontuais no rádio com as mesmas características: pulsações de uma fração de segundo a pouco mais de um segundo.

Bell e Hewish começaram então a conjeturar o tipo de objeto astronómico que poderia ser a origem desses sinais. Uma coisa era certa: pelas leis da Física não poderiam ser estrelas. Variações tão rápidas na emissão de radiação teriam de ser provenientes de objetos muito mais pequenos do que as estrelas.

O indício de uma possível explicação surgiu quando foi detetada, em 1968, uma fonte do mesmo tipo na Nebulosa do Caranguejo, na constelação do Touro. Esta nebulosa é constituída pelos restos de uma estrela cuja explosão (“supernova”) foi observada e registada por astrónomos em 1054.

Os restos mortais das estrelas
Hoje os astrónomos sabem que as supernovas são a forma como certas estrelas terminam a sua vida, esgotada a energia que as fez brilhar durante milhões, ou milhares de milhões de anos. No entanto, até à década de 1920, apenas era conhecido um tipo de “cadáver” estelar, as designadas “anãs brancas”.

Extinta a pressão da energia produzida no interior da estrela, a matéria abate-se sob o efeito da gravidade, já sem nada que se lhe oponha. O resultado é um corpo pequeno e muito denso. Em geral, as anãs brancas são corpos com uma massa semelhante à do Sol, mas compactada num corpo com dimensão comparável à da Terra. Devido ao seu pequeno tamanho, a energia térmica que ainda conservam atribui-lhes a cor branca, por estarem ainda muito quentes.
Até à terceira década do século XX, pensava-se que as anãs brancas eram sempre o estádio final da vida das estrelas, independentemente do tamanho destas. Mesmo as estrelas maiores haveriam de expulsar para o espaço a maior parte do seu material, reduzindo-se a uma anã branca.

Em 1930, o astrofísico indiano Subrahmanyan Chandrasekhar, que estudou em Inglaterra antes de se fixar nos Estados Unidos, calculou que o processo físico que impede as anãs brancas de colapsarem ainda mais só é aplicável para aquelas que tenham uma massa inferior a 1,44 vezes a massa do Sol. Para corpos mais massivos, dá-se um colapso gravitacional ainda maior e estaremos então na presença de um outro objeto.

Em 1933, Fritz Zwicky e Walter Baade, nos EUA, trabalhavam precisamente sobre as explosões estelares do tipo ‘supernova’. Inspirados pela recente descoberta do neutrão, propuseram que estas explosões deixariam para trás um corpo tão denso que a sua pressão seria suficiente para fundir os protões e os eletrões, convertendo-os em neutrões.

Uma “cidade” de neutrões
Uma “estrela de neutrões” teria apenas algumas dezenas de quilómetros de diâmetro, o equivalente a uma grande cidade, mas conteria mais de duas vezes a massa do Sol. Tais objetos exóticos, tão pequenos e muito mais densos do que as anãs brancas, se existissem, seriam, porém, impossíveis de detetar com a tecnologia dos anos 30.

Tal não impediu os cientistas teóricos de tentarem descrever as características que deveriam ter. Uma estrela, que originalmente terá mais de um milhão de quilómetros de diâmetro, com a sua velocidade de rotação e o seu campo magnético, ao reduzir-se a um corpo com apenas dezenas de quilómetros de extensão, pelas leis da conservação da Física, passará a ter uma velocidade de rotação vertiginosa e um campo magnético potentíssimo.

Os eletrões, acelerados pelo campo magnético, emitem radiação praticamente em todos os comprimentos de onda quando se aproximam dos polos magnéticos. Produzem-se então dois feixes de radiação opostos, ao longo do eixo magnético.

Se este eixo, por seu lado, não estiver alinhado com o eixo de rotação da estrela de neutrões, os feixes irão varrer o espaço à semelhança de um farol. Se por coincidência a Terra se encontrar no campo de varrimento de um destes feixes, iremos ver uma cintilação, tal e qual um farol, mas com o mesmo período da rotação da estrela, da ordem de um segundo, ou até menos. Foi o que Jocelyn Bell verificou durante o seu doutoramento, três décadas depois de Zwicky e Baade terem apresentado a sua hipótese.

Em 1968, Anthony Hewish e Jocelyn Bell publicaram na revista Nature um artigo em que defendiam que as fontes de emissão no rádio que estavam a observar podiam ser explicadas como estrelas de neutrões com um feixe de radiação incidindo na Terra a cada ciclo da rotação. Um jornalista deu-lhes o nome de ‘pulsar’, ou seja, ‘pulsating star’, estrela pulsante (embora de facto a estrela não pulse – não varia o seu tamanho – mas apenas varia a emissão eletromagnética que chega à Terra).

Apesar de Jocelyn Bell ser a segunda autora do artigo, em 1974, Anthony Hewish e um seu colega receberam por esta descoberta o prémio Nobel da Física, sem que Bell fosse incluída neste reconhecimento. Houve críticas da comunidade científica a esta decisão. Ainda assim Jocelyn Bell argumentou com modéstia ser um prestígio demasiado elevado para um estudante de doutoramento. O seu orientador reconheceu, no entanto, no discurso do Nobel, a dedicação de Bell e a sua atenção ao detalhe como sendo fundamentais para a descoberta.

Objetos exóticos, … e populares
As estrelas de neutrões são dos objetos astrofísicos mais produtivos. Têm sido usadas para confirmar previsões da Teoria da Relatividade de Einstein, incluindo a primeira deteção indireta de ondas gravitacionais em 1974 (que conduziu ao segundo Nobel da Física envolvendo pulsares, em 1993). Em agosto de 2017, já na era dos observatórios de ondas gravitacionais, como o LIGO, foi detetada a primeira colisão de duas estrelas de neutrões.

As sondas Pioneer 10 e 11, que se encontram agora no limiar do Sistema Solar, levam, cada uma delas, uma placa com um mapa representando 14 pulsares que, quais faróis no oceano cósmico, poderão ajudar uma potencial civilização extraterrestre a encontrar o lugar do Sistema Solar na Galáxia.

Também na música, as estrelas de neutrões deixaram a sua marca, como na capa do primeiro álbum dos Joy Division, Unknown Pleasures, de 1979, baseada na visualização dos ritmos do primeiro pulsar descoberto por Bell, visualização produzida por um estudante de doutoramento em 1970. O músico Vangelis publicou em 1976, oito anos após o artigo de Hewish e Bell, o tema Pulstar no álbum Albedo 0.39, tema que foi utilizado, entre outros, na série documental Cosmos, dirigida por Carl Sagan.

Jocelyn Bell dedicou parte da sua carreira a apoiar raparigas estudantes, assim como estudantes de doutoramento provenientes de comunidades menos representadas na Física, inspirada pela sua própria experiência como a única aluna inscrita no curso de Física em Glasgow. A estas causas entregou ela os três milhões de dólares do prémio especial Breakthrough em Física Fundamental, que recebeu em 2018.

“Estrelas que brilham no tempo” é uma rubrica com que o Instituto de Astrofísica e Ciências do Espaço se associa à celebração dos 100 anos da União Astronómica Internacional (IAU), recordando figuras importantes na história da astronomia dos últimos 100 anos.

Sérgio Pereira, Grupo de Comunicação de Ciência do Instituto de Astrofísica e Ciências do Espaço.
Ciência na Imprensa Regional – Ciência Viva

As primeiras estrelas da Via Láctea

O Very Large Telescope do ESO (VLT) observou a região central da Via Láctea com uma resolução extraordinária e revelou novos detalhes sobre a história da formação estelar na nossa Galáxia. Graças a estas novas observações, os astrónomos descobriram evidências de um evento dramático na vida da Via Láctea: um episódio de formação estelar tão intenso que resultou em mais de uma centena de milhar de explosões de supernovas.

O rastreio que efetuámos a uma enorme região do centro galáctico deu-nos informações sobre o processo de formação estelar nessa região da Via Láctea”, disse Rainer Schödel do Instituto de Astrofísica de Andalusia, em Granada, Espanha, que liderou as observações. “Contrariamente ao que se pensava até agora, descobrimos que a formação de estrelas não ocorreu de forma contínua”, acrescenta Francisco Nogueras-Lara, que liderou dois novos estudos da região central da Via Láctea quando esteve a trabalhar no mesmo instituto em Granada.

No estudo, publicado no dia 16 de Dezembro de 2019 na revista Nature Astronomy , a equipa descobriu que cerca de 80% das estrelas situadas na região central da Via Láctea se formaram nos anos mais primordiais da nossa Galáxia, há cerca de 8 — 13,5 mil milhões de anos atrás. A este período inicial de formação estelar seguiram-se cerca de 6 mil milhões de anos durante os quais nasceram muito poucas estrelas. Esta fase terminou com um episódio muito intenso de formação estelar que ocorreu há cerca de mil milhões de anos quando se formaram nesta região central, durante um período de menos de 100 milhões de anos, estrelas com a massa combinada de, provavelmente, algumas dezenas de milhões de sóis.

As condições na região estudada durante a altura desta intensa atividade deve ter-se assemelhado àquelas que vemos em galáxias com “formação explosiva de estrelas, as quais formam estrelas a taxas superiores a 100 massas solares por ano”, explica Nogueras-Lara, que se encontra agora a trabalhar no Instituto Max Planck de Astronomia, em Heidelberg, Alemanha. Atualmente, toda a Via Láctea forma estrelas a uma taxa de cerca de uma ou duas massas solares por ano.

Esta intensa atividade, que deve ter resultado na explosão de mais de uma centena de milhar de supernovas, foi provavelmente um dos eventos mais energéticos em toda a história da Via Láctea," acrescenta Nogueras-Lara. Durante esta intensa atividade de formação estelar, formaram-se muitas estrelas massivas; uma vez que o tempo de vida destas estrelas é menor que o das estrelas de pequena massa, as suas vidas chegaram ao fim muito mais depressa, terminando em violentas explosões de supernova.

Este trabalho de investigação foi possível graças a observações da região central galáctica obtidas com o instrumento HAWK-I montado no Very Large Telescope do ESO, no deserto chileno do Atacama. Esta câmara infravermelha observou para lá da poeira, dando-nos uma imagem extremamente detalhada da região central da Via Láctea, a qual foi publicada em Outubro deste ano na revista da especialidade Astronomy & Astrophysics por Noguera-Lara e uma equipa de astrónomos de Espanha, Estados Unidos, Japão e Alemanha. A imagem mostra a região mais densa da Galáxia, repleta de estrelas, gás e poeira, onde existe ainda um buraco negro supermassivo. Esta imagem tem uma resolução angular de 0,2 segundos de arco, o que significa que o nível de detalhe obtido pelo HAWK-I corresponde, aproximadamente, a estar em Lisboa e conseguir ver um campo de futebol no Porto.

Esta é a primeira imagem divulgada no âmbito do rastreio GALACTICNUCLEUS. O programa tirou partido do grande campo e elevada resolução angular do instrumento HAWK-I para produzir imagens extremamente nítidas da região central da nossa Galáxia. O rastreio estudou mais de 3 milhões de estrelas, cobrindo uma área correspondente a mais de 60 000 anos-luz quadrados à distância do centro galáctico (um ano-luz corresponde a cerca de 9,5 biliões de km).

Observatório Europeu do Sul
Ciência na Imprensa Regional – Ciência Viva

www.CodeNirvana.in

© Autorizada a utilização de conteúdos para pesquisa histórica Arquivo Velho do Noticias do Nordeste | TemaNN